PROTEIN DATABASE

PROTEIN DATABASE

Today, almost all amino acid sequence information arises from translation of gene sequences. However the amino acid sequences is not in general inferrable with confidence from the gene sequence because of:

> ambiguity in splicing in eukariotes post-translational modifications

Protein sequence database collects these additional information from the literature and provide suitable annotation. The first amino acid sequence database was developed by Margaret O. Dayhoff.

From this archive grew the **Protein Information Resource (PIR)** at the National Biomedical Research Foundation of the Georgetown University Medical Center in Washington DC, USA

In 2002 PIR, along with its international partners, EBI (European Bioinformatics Institute) and SIB (Swiss Institute of Bioinformatics), were awarded a grant from NIH to create UniProt.

UniProt is a single worldwide database of protein sequence and function, by unifying the PIR-PSD, Swiss-Prot, and TrEMBL databases.

PIR A UNIPROL CONSORTIUM MEMBER Protein Information Resource

share the database but offer separate information and retrieval tools

The Universal Protein Resource (UniProt)

A comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

http://www.uniprot.org/

The UniProt databases

The UniProt Metagenomic and Environmental Sequences (UniMES) database is a repository specifically developed for metagenomic and environmental data.

UniProt Knowledgebase (UniProtKB) is the central access point for the collection of functional information on proteins, with accurate, consistent and rich annotation.

Each record contains:

core data (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information);

as much annotation information as possible is added.

The annotation information includes:

- widely accepted biological ontologies
- classifications and cross-references
- clear indications of the quality of annotation in the form of evidence attribution of experimental and computational data.

About 85% of the protein sequences provided by UniProtKB are derived from the translation of the coding sequences (CDS) which have been submitted to the public nucleic acid databases, as well as the related data submitted by the authors.

UniProt Knowledgebase (UniProtKB) consists of two sections:

UniProtKB/Swiss-Prot

This is a high quality manually annotated (reviewed) and non redundant protein sequence database, which brings together experimental results and computed features.

UniProtKB/TrEMBL

This is a computer-annotated (unreviewed) supplement to Swiss-Prot, which strives to gather all protein sequences that are not yet represented in Swiss-Prot.

UniProtKB

The protein sequences are derived from the translation of coding sequences (CDS) submitted to the public nucleic acid databases (EMBL/GenBank/DDBJ) or from other sequence resources, such as Ensembl.

Automated annotation of the highest currently available quality is integrated to TrEMBL entries.

The usual Swiss-Prot annotation pipeline involves the manual annotation of TrEMBL entries, their integration into Swiss-Prot, with their original accession number, and subsequent deletion from TrEMBL.

The UniProt databases

UniProt Archive (UniParc)

It is a comprehensive repository, used to keep track of sequences and their identifiers.

The basic information stored within each UniParc entry is:

- the identifier
- the sequence
- cyclic redundancy check number
- source database(s) with accession and version numbers
- time stamp

The UniProt databases

UniProt Reference Clusters (UniRef)

This databases provide clustered sets of sequences from the UniProtKB and selected UniProt Archive records to obtain complete coverage of sequence space at several resolutions while removing sequence redundancy and reducing the number of

sequences.

UniRef database consists of three sub-databases:

UniRef100 database combines identical sequences and sub-fragments with 11 or more residues (from any organism) into a single UniRef entry. The sequences are derived from UniProtKB and UniParc databases.

UniRef90 is build by clustering UniRef100 sequences such that each cluster is composed of sequences that have at least 90% identity.

UniRef50 is build by clustering UniRef100 sequences such that each cluster is composed of sequences that have at least 50% identity. Such clustering allowed to reduce a size of UniRef100 database of approximately

40% (UniRef90) 65% (UniRef50)

Thus the time needed for similarity searches is significantly reduced.

WELCOME

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

What we provide

UniProtKB	Protein knowledgebase, consists of two sections:
	☆ Swiss-Prot, which is manually annotated and reviewed.
	TrEMBL, which is automatically annotated and is not reviewed.
	Includes complete and reference proteome sets.
UniRef	Sequence clusters, used to speed up sequence similarity searches.

NEWS

UniProt release 2011_09 - Sep

Reference proteomes in UniProt

- Statistics for UniProtKB: Swiss-Prot · TrEMBL
- Forthcoming changes
- > News archives

Follow @uniprot · 71 followers

SITE TOUR

🔏 UniProt - Windows In...

👩 Microsoft PowerPoint ...

🖉 UniProt | The Univers...

1	Favor	ites 🛛 👍 🩋	🕽 Raccolta Web Slice 🝷									
) beta-	carotene hydro	xylase in UniProtKB						- â -	N - E	🖶 🔹 Pag	e 🔹 Safet
	UniPro	ot → Un	iProtKB						_	Downloa	ads · Conta	ct · Docur
		Search	Blast	Ť	Align	Retri	eve ID Ma	apping *				
Search in Query												
	Prot	tein Knowled	gebase (UniProtKB) 🗸	beta-carotene hyd	Iroxylase		Searc	h Advance	d Clear		
	1 - 25 d	of 370 results	s for beta-carotene	ND	hvdroxvlase 🗵 in	UniProtk	B sorted by score	descendin	a 🛛			
	Brows	e by taxonor e sequence	my, keyword, gene redundancy to 1009	ontology %, 90%	r, enzyme class or or 50%	pathway						
	ÚP.										Page 1	
	Res	ults Custo	mize									
	Sho	w only review	ved (12) 🔶(UniProt	KB/Swis	s-Prot) or unreview	ed (358) 🚽	/UniProtKB/TrEM	BL) entries				
	> Res	trict term "be	eta carotene" to pro	tein nam	ie (361)	.00 (000) /		DEJ entited				
	> Res	trict term "hy	, droxylase" to gene	ontolog	y (3), protein name	(360)						
	> Res	trict term ""b	oeta carotene"" to p	athway								
Accession ⁺ Entry name Status ⁺ Protein names ^{>I} ⁺ Gene names ⁺ Organism												
		Q9SZZ8	BCH1_ARATH	*	Beta-carotene 3- hydroxylase 1, chloroplastic		BETA-OHASE 1 E At4g25700 L73G1	81 CHY1 9.80	Arabidopsis t	haliana (Mous	se-ear cres	s)
		Q9LTG0	BCH2_ARATH	*	Beta-carotene 3- hydroxylase 2,	-	BETA-OHASE 2 E	32 CHY2	Arabidopsis t	haliana (Mous	se-ear cres	s)
										😜 Interne	et	4

Cerca	Cerca + Chatea con Busca y Cone	tus Amigos ecta con tus Amigos en Facebook	8. Registrate Aho	twitter	🗧 🖶 Download 🔹
🚖 Favorites 🛛 🚖 🙋 Raccolta Web Slice	•				
Beta-carotene 3-hydroxylase 1, chloroplas	tic precurs		🟠 ·	🔊 🔹 📑	Page Safety To
Search in Protein Knowledgebase (UniProtK	Query B) 💙	Search	Advanced	Clear	
Q9SZZ8 (BCH1_ARATH) Re Last modified September 21, 2011. V	viewed, UniProtKB/Swiss-Prot ersion 58. Sthis entry in the past			─ Contribute ♀ Send fe ♀ Read co	edback omments (0) or add you
📱 📲 Clusters with 100%, 90%, 50% i	dentity 🗐 Third-party data			te	ext xml rdf/xml gff
Names . Attributes . General Customize order	annotation . Ontologies . Alt products	Sequence annotation	Sequences	. References	Cross-refs . Entry in
Names and origin					
Protein names	Recommended name: Beta-carotene 3-hydroxylase 1, chloro Short name=AtB1 EC=1.14.13.129	oplastic			
Gene names	Name:BETA-OHASE 1Synonyms:B1, CHY1Ordered Locus Names:At4g25700ORF Names:L73G19.80				
Organism	Arabidopsis thaliana (Mouse-ear cress)				
Taxonomic identifier	3702 [NCBI]				
Taxonomic lineage	Eukaryota > Viridiplantae > Streptophyta > E eudicotyledons > rosids > malvids > Brassica	mbryophyta › Tracheophyta ales › Brassicaceae › Came	a→ Spermatop lineae→ Arabi	hyta → Magnoliop dopsis	hyta⇒ eudicotyledons⇒
				😜 Internet	

Protein attributes

Sequence length	310 AA.
Sequence status	Complete.
Sequence processing	The displayed sequence is further processed into a mature form.
Protein existence	Evidence at protein level

General annotation (Comments)

Function	Nonheme diiron monooxygenase involved in the biosynthesis of xanthophylls. Specific for beta-ring hydroxylations of beta- carotene. Has also a low activity toward the beta- and epsilon-rings of alpha-carotene. No activity with acyclic carotenoids as lycopene and neurosporene. Uses ferredoxin as an electron donor Probable.				
Catalytic activity	Beta-carotene + 2 NADH + 2 O ₂ = zeaxanthin + 2 NAD ⁺ + 2 H ₂ O.				
Subunit structure	Homodimer Probable				
Subcellular location	Plastid > chloroplast membrane; Multi-pass membrane protein Potential.				
Tissue specificity	Expressed in leaves, flowers, stems, roots and siliques.				

😜 Internet

- B

Protein existence

Last modified February 17, 2011

This subsection of the 'Protein attributes' section indicates the type of evidence that supports the existence of the protein. Note that this subsection does not give information on the accuracy or correctness of the sequence(s) displayed. While it gives information on the existence of a protein, it may happen that the sequence slightly differ, especially for sequences derived from gene model predictions from genomic sequences.

In UniProtKB there are 5 types of evidence for the existence of a protein:

- 1. Evidence at protein level
- 2. Evidence at transcript level
- 3. Inferred from homology
- 4. Predicted
- 5. Uncertain

The value 'Evidence at protein level' indicates that there is clear experimental evidence for the existence of the protein. The criteria include partial or complete Edman sequencing, clear identification by mass spectrometry, X-ray or NMR structure, good quality protein-protein interaction or detection of the protein by antibodies.

The value 'Evidence at transcript level' indicates that the existence of a protein has not been strictly proven but that expression data (such as existence of cDNA(s), RT-PCR or Northern blots) indicate the existence of a transcript.

The value 'Inferred by homology' indicates that the existence of a protein is probable because clear orthologs exist in closely related species.

💮 Protein existence

- 2. Evidence at transcript level
- 3. Inferred from homology
- 4. Predicted
- 5. Uncertain

The value 'Evidence at protein level' indicates that there is clear experimental evidence for the existence of the protein. The criteria include partial or complete Edman sequencing, clear identification by mass spectrometry, X-ray or NMR structure, good quality protein-protein interaction or detection of the protein by antibodies.

The value 'Evidence at transcript level' indicates that the existence of a protein has not been strictly proven but that expression data (such as existence of cDNA(s), RT-PCR or Northern blots) indicate the existence of a transcript.

The value 'Inferred by homology' indicates that the existence of a protein is probable because clear orthologs exist in closely related species.

The value 'Predicted' is used for entries without evidence at protein, transcript, or homology levels.

The value 'Uncertain' indicates that the existence of the protein is unsure.

Only the highest or most reliable level of supporting evidence for the existence of a protein is displayed for each entry. For example, if the existence of a protein is supported by both the presence of ESTs and direct protein sequencing, the protein is assigned the value 'Evidence at protein level'.

Link to relevant document

Criteria description for protein existence.

🕜 🔹

5

📑 拱 🔻 Page 🕶

<u>Go to:</u> 🖂

301 rikmsstor

LOCUS	BAI47579		309 aa	1	linear	PLN 30-MAR-2010				
DEFINITION beta-carotene hydroxylase [Ipomoea obscura].										
ACCESSION BAI47579										
VERSION	VERSION BAI47579.1 GI:262036876									
DBSOURCE	BSOURCE accession AB499057.1									
KEYWORDS .										
SOURCE	URCE Ipomoea obscura									
ORGANISM	Ipomoea d	obscura								
	Eukaryota	a; Viridipla	antae; Strep	otophyta; En	mbryophyta;	; Tracheophyta;				
	Spermator	ohyta; Magno	oliophyta; e	eudicotyledo	ons; core e	eudicotyledons;				
	asterids;	; lamiids; S	Solanales; (Convolvulace	eae; Ipomoe	eeae; Ipomoea.				
REFERENCE	1									
AUTHORS	Yamamizo,	C., Kishimo	oto,S. and (Dhmiya,A.						
TITLE	Carotenoi	id compositi	ion and card	otenogenic g	gene expres	ssion during				
	Ipomoea p	petal develo	opment							
JOURNAL	J. Exp. H	Bot. 61 (3),	, 709-719 (2	2010)						
PUBMED	19933319									
REFERENCE	2 (resid	iues 1 to 30)9)							
AUTHORS	Yamamizo,	,C., Kishima	oto,S. and (Ohmiya,A.						
TITLE	Direct Su	ubmission								
JOURNAL	Submitted	1 (23-APR-20	009) Contact	:Chihiro Ya	amamizo Nat	cional Institute				
	of Florid	cultural Sci	ience; Fujir	noto 2-1, ts	sukuba, Iba	araki 305-8519,				
	Japan									
FEATURES		Location/Qu	Jalifiers							
source	:	1309								
		/organism="	'Ipomoea obs	moea obscura"						
		/db_xref="taxon: <u>89652</u> "								
Protei	n	1309								
		/product="beta-carotene hydroxylase"								
Region		56308								
		/region_nam	ae="FA_hydro	xylase"						
		/note="Fatt	y acid hydı:	coxylase sup	perfamily;	c101132"				
		/db_xref="(:DD: <u>194046</u> "							
CDS		1309								
		/gene="CHYF	3"							
/coded_by="AB499057.1:1930"										
ORIGIN										
1 m	avgisiaas	sgnvyncqfs	lvrpathsas	ppsllfspls	rrfrssvlss	s rrkprltvcf				
61 V	ledeklesg	vqiraeeiek	aiekqisasr	laeklarkrs	erstylvaav	7 msslgitsma				
121 v	lavyyrfaw	qmeggavpyt	emfgtfalsv	gaavgmefwa	rwahralwha	a slwhmheshh				
181 k	pregpfeln	dvfaiinavp	aiallsygff	hkglvpglcf	gaglgitvf	y maymfvhdgl				

241 vhkrfpvgpi advpyfrrva aahqlhhtdk fngvpyglfl gpkeleevgg lndlevevsr

Run	ΒL	AST	Г

Identify Conserved Domains

Find in this Sequence

~

Related information BLink Related Sequences CDD Search Results Conserved Domains (Concise) Conserved Domains (Full) Domain Relatives Encoding mRNA Full text in PMC Nucleotide PubMed Taxonomy

Recent activity Turn Off Clear beta-carotene hydroxylase [lpomoea obscura] Protein Q beta carotene hydroxylase (996) Protein Homo sapiens dystrophin (DMD), transcript variant Dp140c, mRNA Nucleotide Q (human Duchenne muscular dystrophy) AND "Homo sapiens"[porgn] (431) Nucleotide Q human Duchenne muscular dystrophy (989) Nucleotide

See more...

Search for gene and associated protein defective in the Marfan Syndrome

÷	\rightarrow	http://omim.org/entry/134797	🔎 👻 🗟 🗘 🗙 📳 OMIM Entry - *13	47 ×		
x	٥		🔍 - Search 🚸 🏂 🛛 😐 Pavia 6ºC 📑	😢 📷 💰 🛛 (2) Apple Prodotti Lasciato	📑 🛃 🚱 🖂 -	(
Home	About	Statistics • Downloads Help •	External Links Copyright Contact Us		🚼 Sel	lect Languag

UniProt

`	~ ~	rob	Ob	41	18.4	
5	еи	IC II	C JN			
~	00	1011	~			

Advanced Search: OMIM, Clinical Synopses, OM Search History: View, Clear

*134797

FIBRILLIN 1; FBN1

Alternative titles; symbols

FIBRILLIN; FBN

HGNC Approved Gene Symbol: FBN1

Cytogenetic location: 15q21.1 Genomic coordinates (GRCh37): 15:48,700,502 - 48,937,984 (from NCBI)

Gene Phenotype Relationships

Location	Phenotype	Phenotype MIM number
15q21.1	Acromicric dysplasia	102370
	Aortic aneurysm, ascending, and dissection	
	Ectopia lentis, familial	129600
	Geleophysic dysplasia 2	614185
	Marfan syndrome	154700
	MASS syndrome	604308
	Shprintzen-Goldberg syndrome	182212
	Stiff skin syndrome	184900
	Weill-Marchesani syndrome 2, dominant	608328

TEXT

Description

Fibrillin is the major constitutive element of extracellular microfibrils and has widespread distribution in both elastic and nonelastic connective tissue throughout the body. The cDNA was identified in 1991 and was mapped coincident with the locus for Marfan syndrome. Subsequent studies confirmed that mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS; 154700).

Table of Contents - *1347
xternal Links:
Genome
DNA
Protein
UniProt
HPRD
Gene Info
Clinical Resources
Variation
Animal Models
Cellular Pathways

	Search	Blast	Align	Retrieve	ID Mapping			
	Search in		Query					
	Protein Knowledgebase (UniProtKB) FBN1 AND organism:"Homo sapiens [9606]" Search Advanced Search » Clear							
1								
WELCOME					NEWS			
_						3		

The mission of UniProt is to provide the scient^{ist} community with a comprehensive, high-quality and freely access and functional information.

Search through gene and organism

What we provide

UniProtKB	Protein knowledgebase, consists of two sections:
	Swiss-Prot, which is manually annotated and reviewed.
	TrEMBL, which is automatically annotated and is not reviewed.
	Includes complete and reference proteome sets.
UniRef	Sequence clusters, used to speed up sequence similarity searches.
UniParc	Sequence archive, used to keep track of sequences and their identifiers.
Supporting data	Literature citations, taxonomy, keywords, subcellular locations and more.

Getting started

- · Text search
- · Sequence similarity searches (BLAST)
- Sequence alignments
- · Batch retrieval
- Database identifier mapping (ID Mapping)

/ Otatiotica	101	U.I.I.	100
Swiss-Pro	nt -	TrEN	IBI

- > Forthcoming changes
- > News archives

Follow @uniprot · 71 followers

SITE TOUR

	dean dean Age	Term Others
11000		
The relation of a Parity is problem using the second secon	the community with a comprehensive, high-quality and is and functionarithmation.	Robust BC - Apr K. SWF Complete Ser of Vision Sectors Instance From community
Maran punkt Instruction of a punktion of the second secon	This Internal will about you how to find of perdomy implicated in dislatents, and you how 20 structure has been colved. Start@	Description Conference Description Conference - The conference of the conference - The conference
Property The statistical state of up and well site, on one of The state intervence of the state	taning one badded. Plane idents record into some av an diffectuality and may deep anotherity, and may	Use an instant territories I free rank is an consistent of many free constraints to the restrict of the constraints restrict of the constraints of the territories and the

Learn how to make best use of the tools and data on this site.

PROTEIN SPOTLIGHT

life's tremors September 2011

Destruction is sometimes necessary for life to continue. It may sound paradoxical but examples are many. Our body shreds the food we eat to use the parts to feed itself. Certain cells commit suicide when they are of no use anymore...

🗲 🔿 🗊 http://www.uniprot.org/uniprot/?query=FBt 🔎 👻 🗟 Kuman Duchenne mus 🚯 ENA AB499057 🕺 defective - Dizionario i 💭 FBN1 AND organis 🗙	fi 1
 🗴 🔶 🛛 Vinci il iPad, iMac or iPhone 🖬 😭 🚱 🗸 🗸 😪 🖓 🐨 🗴	
UniProt > UniProtKB	Downloads · Contact · Documentatio
Search Blast Align Retrieve ID Mapping *	
Search in Query Protein Knowledgebase (UniProtKB) FBN1 AND organism: "Homo sapiens [9606]" Search Advanced Search »	
12 results for FBN1 ⊠ AND organism:"Homo sapiens (Human) [9606]" ⊠ in UniProtKB sorted by score descending ⊠	
📾 Browse by taxonomy, keyword, gene ontology, enzyme class or pathway 🗸 🖡 Reduce sequence redundancy to 100%, 90% or 50%	Dow
	Pag

Results Customize

> Show only reviewed (5) 🚖 (UniProtKB/Swiss-Prot) or unreviewed (7) 🚖 (UniProtKB/TrEMBL) entries

- > Restrict term "fbn1" to gene name (6)
- > Show only entries from a complete proteome set (8)

Accession	Entry name	Status	+ Protein names	Gene names Gene names	Organism	Length
P35555	FBN1_HUMAN	*	Fibrillin-1	FBN1 FBN	Homo sapiens (Human)	
Q75N89	Q75N89_HUMAN	*	Fibrillin 1	FBN1	Homo sapiens (Human)	
Q07092	COGA1_HUMAN	*	Collagen alpha-1(XVI) chain	COL16A1 FP1572	Homo sapiens (Human)	
Q14766	LTBP1_HUMAN	*	Latent-transforming growth factor beta-bindin	LTBP1	Homo sapiens (Human)	
F5H2N7	F5H2N7_HUMAN	*	Uncharacterized protein	FBN1	Homo sapiens (Human)	
D2JYH6	D2JYH6_HUMAN	*	Fibrillin 1	FBN1	Homo sapiens (Human)	
Q75N88	Q75N88_HUMAN	*	Fibrillin 1	FBN1	Homo sapiens (Human)	
P36897	TGFR1_HUMAN	*	TGF-beta receptor type-1	TGFBR1 ALK5 SKR4	Homo sapiens (Human)	
Q8N2S1	LTBP4_HUMAN	*	Latent-transforming growth factor beta-bindin	LTBP4	Homo sapiens (Human)	
F8W7L2	F8W7L2_HUMAN	*	Uncharacterized protein	FBN1	Homo sapiens (Human)	
Q9NP01	Q9NP01_HUMAN	*	Fibrillin 15		Homo sapiens (Human)	
Q59HB9	Q59HB9_HUMAN	*	Fibrillin 1 variant		Homo sapiens (Human)	

© 2002–2011 UniProt Consortium | License & Disclaimer | Contact

Page

This is a second	Swiss-Prot Variant: FIId					
x 🔶	🔍 - Search 🚸 🏄 😑 Pavia 6°C 📑 🕒 🗱 💰 🛛 (2) Apple Prodotti Lasciato 🛛 🗃 🛃 🚱 🖂 -					
UniProt 🔾 UniProtKB		Downloads · Contact · D				
Search Blast * Align	Retrieve ID Mapping *					
Search in Query Protein Knowledgebase (UniProtKB) Image: Clear mark						
P35555 (FBN1_HUMAN) Reviewed, UniProtKB/Swiss-Prot						

P Read comments (0

text xml r

Last modified September 21, 2011. Version 145. 🔊 This entry in the past...

Clusters with 100%, 90%, 50% identity | 🗅 Documents (6) | 🎯 Third-party data

🗱 Names · Attributes · General annotation · Ontologies · Sequence annotation · Sequences · References · Web links · Cross-refs · Entry info · Documents Customize order

Names and origin

Protein names	Recommended name: Fibrillin-1
Gene names	Name: FBN1 Synonyms:FBN
Organism	Homo sapiens (Human)
Taxonomic identifier	9606 [NCBI]
Taxonomic lineage	Eukaryota > Metazoa > Chordata > Craniata > Vertebrata > Euteleostomi > Mammalia > Eutheria > Euarchontoglires > Primates > Haplorrhini > Catarrhini > Hominidae > Homo

Protein attributes

Sequence length	2871 AA.
Sequence status	Complete.
Sequence processing	The displayed sequence is further processed into a mature form.
Protein existence	Evidence at protein level

General annotation (Comments)

	manifestations. Ref.31 Ref.53 Ref.57 Ref.57
	Defects in FBN1 are a cause of isolated ectopia lentis (FL) [MIM:129600]. The symptoms of this autosomal dominant fibrillinonathy overlap with those of Marfan syndrome, with the exclusion of the skeletal and cardiova
	mutations. Marfan syndrome has been suggested in at least 2 historical figures, Abraham Lincoln and Paganini. (Ref.2) (Ref.24) (Ref.25) (Ref.26) (Ref.27) (Ref.29) (Ref.29) (Ref.20) (Ref.32) (Ref.32) (Ref.33) (Ref.34) (Ref.35) (Ref.36) (Ref.38) (Ref.38) (Ref.43) (Ref.43) (Ref.43) (Ref.44) (Ref.45) (Ref.45) (Ref.43) (Ref.45) (Ref.50) (Ref.51) (Ref.53) (Ref.54) (Ref.55) (Ref.57) (Ref.58) (Ref.59) (Ref.50) (Ref.51)
	dilation of the aortic root and ascending aorta, causing aortic incompetence and dissection. Note=The majority of the more than 600 mutations in FBN1 currently known are point mutations, the rest are frameshifts and s
	including scoliosis, chest wall deformity, tall stature, abnormal joint mobility. Ectopia lentis occurs in up to about 80% of MFS patients and is almost always bilateral. The leading cause of premature death in MFS patients
Involvement in disease	Defects in FBN1 are a cause of Marfan syndrome (MFS) [MIM:154700]. MFS is an autosomal dominant disorder that affects the skeletal, ocular, and cardiovascular systems. A wide variety of skeletal abnormalities occur
Post-translational modification	Forms intermolecular disulfide bonds either with other fibrillin-1 molecules or with other components of the microfibrils.
Subcellular location	Secreted > extracellular space > extracellular matrix.
Subunit structure	Interacts with COL16A1. Interacts with integrin alpha-V/beta-3. (Ref.11) (Ref.22)
	support. Regulates osteoblast maturation by controlling TGF-beta bioavailability and calibrating TGF-beta and BMP levels, respectively (By similarity). (Ref.22)
Function	Fibrillins are structural components of 10-12 pm extracellular calcium-binding microfibrils, which occur either in association with elastin or in elastin-free bundles. Fibrillin-1-containing microfibrils provide long-term force b

Detailer total Detailer total Detailer total Detailer total Detailer total Detailer total Natural variant 20 1 V C In MFS (mEQ) VAR Natural variant 20 1 A T (getSP-n25397) VAR Natural variant 62 1 R C In MFS (mEQ) VAR Natural variant 62 1 C F In MFS (mEQ) VAR Natural variant 111 1 C R In MFS (mEQ) VAR Natural variant 1115 1 C R In MFS (mEQ) VAR Natural variant 112 1 C R In MFS (mEQ) VAR Natural variant 112 1 C R In MFS (mEQ) VAR Natural variant 112 1 C R In MFS (mEQ) VAR Natural variant 112 1 C R In MFS (mEQ) VAR Natural variant 112 1 C R In MFS (mEQ) VAR Natural variant 1 C G In MFS (mEQ) VAR VAR Natural vari	12 Na	ames · Attributes ·	General annotation	n · O	ntologies - Sequence annotation - Sequences - References - Web links - Cross-refs - Entry into - Documents - Customize order		
Natural variant 20 1 Y - C in MFS (@) Mem VAR, Natural variant 20 1 X - T (BSNP m/25397) Mem VAR, Natural variant 60 1 R - C in MFS (@) Mem VAR, Natural variant 60 1 C - F in MFS (@) Mem VAR, Natural variant 11 1 C - F in MFS (@) Mem VAR, Natural variant 111 1 C - F in MFS (@) Mem VAR, Natural variant 111 1 C - F in MFS (@) Mem VAR, Natural variant 1115 1 S - C in L (@) VAR, VAR, Natural variant 112 1 R - C in MFS (@) (@) (@) VAR, VAR, Natural variant 112 1 R - C in MFS (@) (@) (@) VAR, VAR, Natural variant 1123 1 R - C in MFS (@) (@) (@) VAR, VAR, Natural variant 1125 1 C - S in MFS (@) (@) (@) (@) (@) (@) (@) (@) (@) (@)		Disullide bolid	2074 ↔ 2000				
Natural variant 20 1 Y - C in MFS (def)	Natural variations						
Natural variant 27 1 A+-T. [dbSNP:rs2597] WAR. Natural variant 62 1 RC. la MFS, also in a patient with ecopial lentis and retinal detachment. [dbSNP:rs2540] (mts) H VAR. Natural variant 61 1 CR in MFS. (mts) H VAR. Natural variant 111 1 CR in MFS. (mts) H VAR. Natural variant 112 1 RC in MFS. (mts) H VAR. Natural variant 112 1 RC in MFS. (mts) VAR. VAR. Natural variant 112 1 RC in MFS. (mts) VAR. VAR. Natural variant 112 1 CY in MFS. (mts) VAR. VAR. Natural variant 113 1 CY in MFS. (mts) VAR. VAR. Natural variant 116 1 CY in MFS. (mts) VAR. VAR. Natural variant 113 1 HO. (mts) (mts) VAR. VAR. Natural variant 154 1 CF in		Natural variant	20	1	$Y \rightarrow C \text{ in MFS.} (\text{Ref.59})$	+	VAR_023859
Natural variant 62 1 R C in MFS also in a patient with ectopia lentis and retinal detachment. [dbSNP:rs25403] (wfs) >>>>>>>>>>>>>>>>>>>>>>>>>>>>		Natural variant	27	1	A → T. [dbSNP:rs25397]	+	VAR_014663
Natural variant 09 1 C F in MFS (mS)		Natural variant	62	1	$R \rightarrow C$ in MFS; also in a patient with ectopia lentis and retinal detachment. [dbSNP:rs25403] (Ref.54)	+	VAR_017967
Natural variant 111 1 C R in MFS (MES) VAR Natural variant 1115 1 R C in MFS (MES) VAR Natural variant 1115 1 S C in E. (MFS) (MES) VAR Natural variant 1122 1 R C in MFS (MES) VAR Natural variant 1123 1 C V in MFS, Server neonatal. (MES) VAR Natural variant 1229 1 C V in MFS, Server neonatal. (MES) VAR Natural variant 154 1 C F in MFS, GEED VAR Natural variant 156 1 C F in MFS, GEED VAR Natural variant 156 1 C F in MFS, GEED VAR Natural variant 166 1 C F in MFS, GEED VAR Natural variant 177 1 C R in MFS, GEED VAR Natural variant 217 1 W G in MFS, GEED VAR Natural variant 217 1 W G in MFS, GEED VAR Natural variant 224 1 C R in MFS, GEED VAR Natural v		Natural variant	89	1	$C \rightarrow F \text{ in MFS.} (\text{Ref.53})$	+	VAR_017968
Natural variant 114 1 R - C in MFS (1925) + VAR Natural variant 115 1 S - C in FL (1925) + VAR Natural variant 112 1 R - C in MFS (1925) + VAR Natural variant 112 1 R - C in MFS (1925) + VAR Natural variant 112 1 C - Y in MFS (1925) + VAR Natural variant 113 1 H - Q (19SNP:rs503860) + VAR Natural variant 116 1 C - F in MFS (1925) + VAR Natural variant 1166 1 C - F in MFS (1925) + VAR Natural variant 1166 1 C - F in MFS (1925) + VAR Natural variant 1166 1 C - R in MFS (1925) + VAR Natural variant 116 1 C - R in MFS (1925) + VAR Natural variant 127 1 W - G in MFS (1925) + VAR Natural variant 10 C - R in MFS (1925) 1 - VAR		Natural variant	111	1	$C \rightarrow R \text{ in MFS.} (\text{Ref.45})$	+	VAR_002276
Natural variant 115 1 S - C in EL (% 2) + VAR Natural variant 112 1 R - C in MFS. (% 3) + VAR Natural variant 1123 1 C - Y in MFS. (% 3) + VAR Natural variant 1123 1 C - Y in MFS. (% 3) + VAR Natural variant 1133 1 H - Q. (doSNP.rs363850) + VAR Natural variant 1166 1 C - F in MFS. (% 2) + VAR Natural variant 1166 1 C - S in MFS. (% 2) + VAR Natural variant 1166 1 C - S in MFS. (% 2) + VAR Natural variant 1166 1 C - S in MFS. (% 2) + VAR Natural variant 1177 1 C - R in MFS. (% 2) + VAR Natural variant 217 1 W - G in MFS. (% 2) + VAR Natural variant 224 1 C - R in MFS (% 2) (% 2) + VAR Natural variant 224 1 C - R in MFS (% 2)		Natural variant	114	1	$R \rightarrow C \text{ in MFS.} (Ref.55)$	+	VAR_017969
Natural variant 122 1 $R \rightarrow C$ in MFS. (me3) (me49) (me5) 4 VAR. Natural variant 123 1 $C \rightarrow V$ in MFS. (me30) 4 VAR. Natural variant 129 1 $C \rightarrow V$ in MFS. (me30) 4 VAR. Natural variant 133 1 $H \rightarrow O.$ (doSNP rs303950) 4 VAR. Natural variant 164 1 $C \rightarrow V$ in MFS. (me37) 4 VAR. Natural variant 166 1 $C \rightarrow F$ in MFS. (me37) 4 VAR. Natural variant 166 1 $C \rightarrow F$ in MFS. (me37) 4 VAR. Natural variant 166 1 $C \rightarrow F$ in MFS. (me37) 4 VAR. Natural variant 166 1 $C \rightarrow F$ in MFS. (me37) 4 VAR. Natural variant 171 1 $C \rightarrow R$ in MFS. (me37) 4 VAR. Natural variant 224 1 $C \rightarrow R$ in MFS. (me37) 4 VAR. Natural variant 224 1 $C \rightarrow R$ in MFS. (me37)		Natural variant	115	1	$S \rightarrow C \text{ in EL.} (\text{Ref.54})$	+	VAR_017970
Natural variant 123 1 C - Y in MFS. (merg) I - WAR. Natural variant 129 1 C - Y in MFS. (merg) I - WAR. Natural variant 133 1 H - Q (gbSNP:s538350) I - WAR. Natural variant 154 1 C - Q (gbSNP:s538350) I - WAR. Natural variant 166 1 C - F in MFS. (merg) I - WAR. Natural variant 166 1 C - F in MFS. (merg) I - WAR. Natural variant 166 1 C - F in MFS. (merg) I - WAR. Natural variant 177 1 C - R in MFS. (merg) I - WAR. Natural variant 171 1 C - R in MFS. (merg) I - WAR. Natural variant 217 1 W - G in MFS. (merg) I - WAR. Natural variant 224 1 C - R in MFS (merg) I - WAR. Natural variant 239 1 I - T. (dbSNP:s1234002) I - WAR. Natural variant 330 1 G - S. (dbSNP:s12360350) I - WAR. Natural variant 349 1 R - G in MFS. (merg) I - WA		Natural variant	122	1	$R \rightarrow C \text{ in MFS.} (\text{Ref.33}) (\text{Ref.49}) (\text{Ref.53})$	+	VAR_002277
Natural variant 129 1 C - Y in MFS; severe neonatal. [#13 + VAR, Natural variant 133 1 H - 0. (dbSNP:rs363850) + VAR, Natural variant 154 1 C - S in MFS. (md2) + VAR, Natural variant 166 1 C - S in MFS. (md2) + VAR, Natural variant 166 1 C - R in MFS. (md2) + VAR, Natural variant 166 1 C - R in MFS. (md2) + VAR, Natural variant 177 1 C - R in MFS. (md2) + VAR, Natural variant 217 1 W - G in MFS. (md2) + VAR, Natural variant 224 1 C - R in MFS. (md2) + VAR, Natural variant 224 1 C - R in MFS. (md2) + VAR, Natural variant 239 1 I - T. (indSNP:rs12324002) + VAR, Natural variant 363 1 G - S. (indSNP:rs12324002) + VAR, Natural variant 439 1 R - G in MFS. (md2		Natural variant	123	1	$C \rightarrow Y \text{ in MFS.} (\text{Ref.59})$	+	VAR_023860
Natural variant 133 1 H - Q. [dbSNP:rs363850] + VAR. Natural variant 154 1 C - S in MFS. (mar) + VAR. Natural variant 166 1 C - F in MFS. (mar) + VAR. Natural variant 166 1 C - F in MFS. (mar) + VAR. Natural variant 166 1 C - F in MFS. (mar) + VAR. Natural variant 166 1 C - F in MFS. (mar) + VAR. Natural variant 177 1 C - F in MFS. (mar) + VAR. Natural variant 217 1 W - G in MFS. (mar) + VAR. Natural variant 224 1 C - R in MFS. (mar) + VAR. Natural variant 224 1 C - R in MFS. (mar) + VAR. Natural variant 239 1 - T. (mor) Mar) VAR. Natural variant 363 1 G - S. [dbSNP:rs323655] + VAR. Natural variant 439 1 R - G in MFS. (mar)		Natural variant	129	1	$C \rightarrow Y$ in MFS; severe neonatal. Ret33	+	VAR_002278
		Natural variant	133	1	$H \rightarrow Q. [dbSNP:rs363850]$	+	VAR_055723
Natural variant1661 $C \rightarrow F \text{ in } MFS. (Ref3)+$		Natural variant	154	1	$C \rightarrow S \text{ in MFS.} (\text{Ref.57})$	+	VAR_017971
Natural variant 166 1 C - S in MFS. (metry) VAR Natural variant 177 1 C - R in MFS. (metry) VAR Natural variant 217 1 W - G in MFS. (metry) VAR Natural variant 217 1 W - G in MFS. (metry) VAR Natural variant 224 1 C - R in MFS. (metry) VAR Natural variant 224 1 C - R in MFS. (metry) VAR Natural variant 224 1 C - R in MFS. (metry) VAR Natural variant 224 1 C - R in MFS. (metry) VAR Natural variant 224 1 R - C in MFS. (metry) VAR Natural variant 239 1 I - T. (mbS) Metry) VAR Natural variant 363 1 G - S. (mbS) VAR VAR Natural variant 366 1 W - C in MFS. (metry) VAR VAR Natural variant 439 1 R - G in MFS. (metry) VAR VAR		Natural variant	166	1	$C \rightarrow F \text{ in MFS.} (\text{Ref.38})$	+	VAR_002279
Natural variant1771 $C \rightarrow R in MFS (tdbSNP:rs363863) (Red 59)$ +VARNatural variant2171 $W \rightarrow G in MFS. (Red 59)$ (Red 59)+VARNatural variant2241 $C \rightarrow R in MFS. (Red 59)$ +VARNatural variant2401 $R \rightarrow C in MFS and EL (Red 59) (Red 57)$ +VARNatural variant3291 $I \rightarrow T. (dbSNP:rs12324002)$ +VARNatural variant3331 $G \rightarrow S. (dbSNP:rs12324002)$ +VARNatural variant3661 $W \rightarrow C in MFS. (Red 59)$ +VARNatural variant3661 $W \rightarrow C in MFS. (Red 59)$ +VARNatural variant4391 $R \rightarrow G in MFS. (Red 59)$ +VARNatural variant4721 $C \rightarrow Y. (dbSNP:rs477565) (Red 1) (Red 4) (Red 5) (Red 5)$ +VARNatural variant4761 $C \rightarrow G in MFS.$ +VARNatural variant4901 $C \rightarrow F in MFS. (Red 59)$ +VARNatural variant5041 $C \rightarrow F in MFS. (Red 59)$ +VARNatural variant5071Missing in MFS.+VARNatural variant5071Missing in MFS.+VARNatural variant5071Missing in MFS.+VARNatural variant5071Missing in MFS.+VARNatural variant5451 $R \rightarrow C in MFS. (Red 59)$ +VARNatural varian		Natural variant	166	1	$C \rightarrow S \text{ in MFS.} (\text{Ref.57})$	+	VAR_002280
Natural variant2171 $W \rightarrow G$ in MFS. (Ref.S) $H = VAR$ Natural variant2241 $C \rightarrow R$ in MFS. (Ref.S) $+ \cdots \lor VAR$ Natural variant2241 $R \rightarrow C$ in MFS and EL. (Ref.S) $+ \cdots \lor VAR$ Natural variant2401 $R \rightarrow C$ in MFS and EL. (Ref.S) $+ \cdots \lor VAR$ Natural variant3291 $I \rightarrow T. [dbSNP:rs12324002]$ $+ \cdots \lor VAR$ Natural variant3631 $G \rightarrow S. [dbSNP:rs363855]$ $+ \cdots \lor VAR$ Natural variant3661 $W \rightarrow C$ in MFS. (Ref.S) $+ \cdots \lor VAR$ Natural variant3661 $W \rightarrow C$ in MFS. (Ref.S) $+ \cdots \lor VAR$ Natural variant4391 $R \rightarrow G$ in MFS. (Ref.S) $+ \cdots \lor VAR$ Natural variant4721 $C \rightarrow Y. [dbSNP:rs4775765] (Ref.1) (Ref.A) (Ref.S) (Ref.S)+ \cdots \lor VARNatural variant4761C \rightarrow G in MFS.- \cdots \lor VARNatural variant4761C \rightarrow F in MFS. (Ref.S)- \cdots \lor VARNatural variant5071D \rightarrow Y in MFS.- \cdots \lor VARNatural variant5071Missing in MFS.- \cdots \lor VARNatural variant5071Ref.GS- \cdots \lor VARNatural variant5451R \rightarrow C in MFS. (Ref.S)- \cdots \lor VARNatural variant5481N \rightarrow 1 in MFS. (Ref.S)- \cdots \lor VARNatural variant5481N \rightarrow 1 in MFS. (Ref.S)- \cdots \lor VAR$		Natural variant	177	1	$C \rightarrow R \text{ in MFS. [dbSNP:rs363853]} \xrightarrow{\text{Ref.59}}$	+	VAR_023861
Natural variant 224 1 C - R in MFS. Ref59 + VAR Natural variant 240 1 R - C in MFS and EL. (Ref50 (Ref50 (Ref57)) + VAR Natural variant 329 1 I - T. [dbSNP:rs12324002] + VAR Natural variant 363 1 G - S. [dbSNP:rs12324002] + VAR Natural variant 363 1 G - S. [dbSNP:rs12324002] + VAR Natural variant 363 1 G - S. [dbSNP:rs12324002] + VAR Natural variant 366 1 W - C in MFS. (Ref59) + VAR Natural variant 439 1 R - G in MFS. (Ref59) - VAR Natural variant 472 1 C - Y. [dbSNP:rs4775765] (Ref19		Natural variant	217	1	$W \rightarrow G \text{ in MFS. } \underbrace{\text{Ref.30}}_{\text{Ref.36}}$	+	VAR_002281
Natural variant2401 $R \rightarrow C$ in MFS and EL. (Ref3) (Ref5) (Ref5) $+$ VARNatural variant3291 $I \rightarrow T.$ (dbSNP:rs12324002) $+$ VARNatural variant3631 $G \rightarrow S.$ (dbSNP:rs363855) $+$ VARNatural variant3661 $W \rightarrow C$ in MFS. (Ref5) $+$ VARNatural variant4391 $R \rightarrow G$ in MFS. (Ref5) $+$ VARNatural variant4391 $R \rightarrow G$ in MFS. (Ref5) $+$ VARNatural variant4721 $C \rightarrow Y.$ (dbSNP:rs4775765) (Ref1) (Ref4) (Ref5) (Ref5) $+$ VARNatural variant4761 $C \rightarrow G$ in MFS. $-$ VARNatural variant4901 $D \rightarrow Y$ in MFS. $-$ VARNatural variant5041 $C \rightarrow F$ in MFS. (Ref5) $-$ VARNatural variant5071Missing in MFS. $-$ VARNatural variant5411 $C \rightarrow Y$ in MFS. (Ref5) $-$ VARNatural variant5451 $R \rightarrow C$ in MFS. (Ref5) $-$ VARNatural variant5451 $R \rightarrow C$ in MFS. (Ref5) $-$ VARNatural variant5451 $R \rightarrow C$ in MFS. (Ref5) $-$ VARNatural variant5481 $N \rightarrow I$ in MFS. (Ref5) $-$ VARNatural variant5481 $N \rightarrow I$ in MFS. (Ref5) $-$ VAR		Natural variant	224	1	$C \rightarrow R \text{ in MFS.} \xrightarrow{\text{Ref.59}}$	+	VAR_023862
Natural variant3291I \rightarrow T. [dbSNP:rs12324002]IVARNatural variant3631G \rightarrow S. [dbSNP:rs363855]IVARNatural variant3661W \rightarrow C in MFS. (Ref.53)IVARNatural variant4391R \rightarrow G in MFS. (Ref.59)IVARNatural variant4721C \rightarrow Y. [dbSNP:rs4775765] (Ref.1 (Ref.4) (Ref.5) (Ref.6))IVARNatural variant4761C \rightarrow G in MFS.IVARNatural variant4761D \rightarrow Y in MFS.IVARNatural variant5041C \rightarrow F in MFS. (Ref.52)IVARNatural variant5071Missing in MFS.IVARNatural variant5071C \rightarrow Y in MFS. (Ref.53)IVARNatural variant5451R \rightarrow C in MFS. (Ref.53)IVARNatural variant5451N \rightarrow L in MFS. (Ref.53)IVARNatural variant5481N \rightarrow I in MFS. (Ref.53)IVAR		Natural variant	240	1	$R \rightarrow C$ in MFS and EL. (Ref.53) (Ref.55) (Ref.57)	+	VAR_017972
Natural variant3631 $G \rightarrow S.$ [dbSNP:rs363855]+VARNatural variant3661 $W \rightarrow C$ in MFS. (Ref.53)+VARNatural variant4391 $R \rightarrow G$ in MFS. (Ref.59)+VARNatural variant4721 $C \rightarrow Y.$ [dbSNP:rs4775765] (Ref.1 (Ref.4) (Ref.5) (Ref.6)+VARNatural variant4761 $C \rightarrow Y.$ [dbSNP:rs4775765] (Ref.1 (Ref.4) (Ref.5) (Ref.6)+VARNatural variant4761 $C \rightarrow Y.$ [dbSNP:rs4775765] (Ref.1 (Ref.4) (Ref.5) (Ref.6)+VARNatural variant4901 $D \rightarrow Y$ in MFS.+VARNatural variant5041 $C \rightarrow F$ in MFS. (Ref.52)+VARNatural variant5071Missing in MFS.+VARNatural variant5071Missing in MFS.+VARNatural variant5411 $C \rightarrow Y$ in MFS. (Ref.63)+VARNatural variant5451 $R \rightarrow C$ in MFS. (Ref.63)+VARNatural variant5451 $R \rightarrow C$ in MFS. (Ref.63)+VARNatural variant5451 $R \rightarrow C$ in MFS. (Ref.63)+VARNatural variant5481 $N \rightarrow 1$ in MFS. (Ref.27)+VAR		Natural variant	329	1	I → T. [dbSNP:rs12324002]	-+	VAR_055724
Natural variant3661 $W \rightarrow C$ in MFS. (Ref.53) $VAR_{}$ Natural variant4391 $R \rightarrow G$ in MFS. (Ref.59) $VAR_{}$ Natural variant4721 $C \rightarrow Y$. (JdSNP:rs4775765) (Ref.1) (Ref.4) (Ref.5) (Ref.6) $VAR_{}$ Natural variant4761 $C \rightarrow G$ in MFS. $VAR_{}$ Natural variant4901 $D \rightarrow Y$ in MFS. $VAR_{}$ Natural variant5041 $C \rightarrow F$ in MFS. (Ref.52) $-+VAR_{}$ Natural variant5071Missing in MFS. $VAR_{}$ Natural variant5071C $\rightarrow Y$ in MFS. (Ref.52) $-+VAR_{}$ Natural variant5071Missing in MFS. $VAR_{}$ Natural variant5071Missing in MFS. $VAR_{}$ Natural variant5411 $C \rightarrow Y$ in MFS. (Ref.53) $-+VAR_{}$ Natural variant5451 $R \rightarrow C$ in MFS. (Ref.53) $-+VAR_{}$ Natural variant5451 $R \rightarrow C$ in MFS. (Ref.53) $-+$		Natural variant	363	1	$G \rightarrow S. [dbSNP:rs363855]$		VAR_055725
Natural variant4391 $R \rightarrow G$ in MFS. Ref.59		Natural variant	366	1	$W \rightarrow C \text{ in MFS. } \mathbb{Ref.53}$		VAR_017973
Natural variant 472 1 $C \rightarrow Y. [dbSNP:rs4775765] Ref.1 Ref.4 Ref.5 Ref.6\vee VARNatural variant4761C \rightarrow G in MFS.\vee VARNatural variant4761C \rightarrow G in MFS.\vee VARNatural variant4901D \rightarrow Y in MFS.\vee VARNatural variant5041C \rightarrow F in MFS. (Ref.52)\vee VARNatural variant5071Missing in MFS.\vee VARNatural variant5071C \rightarrow Y in MFS. (Ref.60)\vee VARNatural variant5411C \rightarrow Y in MFS. (Ref.63)\vee VARNatural variant5451R \rightarrow C in MFS. (Ref.63)\vee VARNatural variant5481N \rightarrow I in MFS. (Ref.27)\vee VAR$		Natural variant	439	1	$R \rightarrow G \text{ in MFS.} (Ref.59)$		VAR_023863
Natural variant 476 1 $C \rightarrow G$ in MFS.VARNatural variant 490 1 $D \rightarrow Y$ in MFS.VARNatural variant 504 1 $C \rightarrow F$ in MFS. (Ref.52)VARNatural variant 507 1Missing in MFS.VARNatural variant 507 1 $C \rightarrow Y$ in MFS. (Ref.60)VARNatural variant 541 1 $C \rightarrow Y$ in MFS. (Ref.60)VARNatural variant 545 1 $R \rightarrow C$ in MFS. (Ref.63)VARNatural variant 545 1 $R \rightarrow C$ in MFS. (Ref.63)VARNatural variant 548 1 $N \rightarrow I$ in MFS. (Ref.27)VAR		Natural variant	472	1	$C \rightarrow Y. [dbSNP:rs4775765] (Ref.1) (Ref.4) (Ref.5) (Ref.6)$		VAR_058090
Natural variant4901D \rightarrow Y in MFS.VARNatural variant5041C \rightarrow F in MFS. Ref.52 \rightarrow VARNatural variant5071Missing in MFS. \rightarrow VARNatural variant5411C \rightarrow Y in MFS. Ref.60 \rightarrow VARNatural variant5451R \rightarrow C in MFS. Ref.63 \rightarrow VARNatural variant5451N \rightarrow L in MFS. Ref.63 \rightarrow VARNatural variant5481N \rightarrow L in MFS. Ref.27 \rightarrow VAR		Natural variant	476	1	$C \rightarrow G$ in MFS.		VAR_002282
Natural variant5041 $C \rightarrow F \text{ in MFS. Ref.52}$		Natural variant	490	1	$D \rightarrow Y$ in MFS.		VAR_002283
Natural variant5071Missing in MFS.VAR_Natural variant5411 $C \rightarrow Y$ in MFS. Ref.60VAR_Natural variant5451 $R \rightarrow C$ in MFS. Ref.45 (Ref.53)VAR_Natural variant5481 $N \rightarrow l$ in MFS. Ref.27VAR_		Natural variant	504	1	$C \rightarrow F \text{ in MFS. } \mathbb{R}^{ef.52}$		VAR_010776
Natural variant 541 1 C → Y in MFS. (Ref.60) VAR		Natural variant	507	1	Missing in MFS.		VAR_023864
Natural variant 545 1 R→C in MFS. (Ref.45) (Ref.53) VAR_ Natural variant 548 1 N→L in MFS. (Ref.27) VAR_		Natural variant	541	1	$C \rightarrow Y \text{ in MFS. } \mathbb{R}^{ef.80}$		VAR_023865
Natural variant 548 1 N → I in MFS. Ref.27		Natural variant	545	1	$R \rightarrow C \text{ in MFS.} (Ref.45) (Ref.53)$		VAR_002284
		Natural variant	548	1	$N \rightarrow I \text{ in MFS.} (Ref.27)$		VAR_002285
Natural variant 560 1 $G \rightarrow S \text{ in MFS. } \mathbb{Ref.53}$		Natural variant	560	1	$G \rightarrow S$ in MFS. (Ref.53)		VAR_017974
Natural variant 570 1 $C \rightarrow Y$ in MFS. (Ref.53) VAR_		Natural variant	570	1	$C \rightarrow Y \text{ in MFS. } \mathbb{R}^{ef.53}$		VAR_017975
Natural variant 587 1 $C \rightarrow Y$ in MFS. (Ref.43) (Ref.54) VAR_		Natural variant	587	1	$C \rightarrow Y \text{ in MFS. } \mathbb{Ref.43} \mathbb{Ref.54}$		VAR_002286

		http://www.uniprot.org/blast/?about=P355:		Human Duchenne mus	AB499057	- Dizionario I
x	٠	Q.	- Search 🚸 🏄	🖄 Pavia 12°C 📑 😢 🚟 🤞	Vinci il iPad, iMac or iPhone	🛋 🖪 🔮
	Database UniProtKB	Threshold Matrix Threshold Matrix Auto	Filtering None 	Gapped Hits ▼ yes ▼ 250 ▼		

P35555[129], Fibrillin-1, Homo sapiens

10 20 30 40 50 60 MRRGRLLEIA LGFTVLLASY TSHGADANLE AGNVKETRAS RAKRGGGGH DALKGPNVCG 70 80 90 100 110 120 SRYNAYCCPG WKTLPGGNQC IVPICRHSCG DGFCSRPNMC TCPSGQIAPS CGSRSIQHCM 130 140 150 160 170 180 IRCMNGGSC3 DDHCLCQKGY IGTHCGOPVC ESGCLNGGRC VAPNRCACTY GFTGPQCERD 190 200 210 220 230 240 YRTGPCFTVI SNOMCQGQLS GIVCTKTLCC ATVGRAWGHP CEMCPAQPHP CRRGFIPNIR 250 260 270 280 290 300 TGACQDVDEC QAIFGLCQGG NCINTVGSFE CKCPAGHKLN EVSQKCEDID ECSTIFGICE 310 320 330 340 350 360 GGECTNTVSS YFCKCPPGFY TSPDGTRCID VRPGYCYTAL TNGRCSNQLP QSITKMQCCC 370 380 390 400 410 420 DAGRCWSPGV TVAPEMCPIR ATEDENKLCS VPMVIPGRPE YPPPPLGPIP PVLPVPPGFP 430 440 450 460 470 480 PGPQIPVPRP PVEYLYPSRE PPRVLPVNVT DYCQLVRYLC QNGRCIPTPG SCRCCNKGF 490 500 510 520 530 540 QLDLRGECID VDECEKNPCA GGECINNQGS YTCQCRAGYQ STLTRTECRD IDECLQNGRI 550 560 570 580 590 600 CNNGRCINTD GSFHCVCNAG FHVTRDGKNC EDMDECSIRN MCLNGMCINE DGSFKCICKP 610 620 630 640 650 660 GFQLASDGRY CKDINECETP GICMNGRCVN TDGSYRCECF PGLAVGLDGR VCVDTHMRST 670 680 690 700 710 720 CYGGYKRGQC IKPLFGAVTK SECCCASTEY AFGEPCQPCP AQNSAEYQAL CSSGPGMTSA 730 740 750 760 770 780 GSDINECALD PDICPNGICE NLRGTYKCIC NSGYEVDSTG KNCVDINECV LNSLLCDNGO 790 800 810 820 830 840 CRNTPGSFVC TCPKGFIYKP DLKTCEDIDE CESSPCINGV CKNSPGSFIC ECSSESTLDP 850 860 870 880 890 900 TKTICIETIK GTCWQTVIDG RCEININGAT LKSQCCSSLG AAWGSPCTLC QVDPICGKGY 910 920 930 940 950 960 SRIKGTQCED IDECEVFPGV CKNGLCVNTR GSFKCQCP3G MTLDATGRIC LDIRLETCFL 970 980 990 1000 1010 1020 RYEDEECTLP IAGRHRMDAC CC3VGAAWGT EECEECPMRN TPEYEELCPR GPGFATKEIT 1030 1040 1050 1060 1070 1080 NGKPFFKDIN ECKMIPSLCT HGKCRNTIGS FKCRCDSGFA LDSEERNCTD IDECRISPDL 1090 1100 1110 1120 1130 1140 CGRGQCVNTP GDFECKCDEG YESGFMMKN CMDIDECQRD PLLCRGGVCH NTEGSYRCEC

UniProtKB/Swiss-Prot variant pages

Swiss-Prot variant: VAR_002278 in UniProtKB/Swiss-Prot P35555

General Information · Information on the variant · Sequence features · Structural features · References for the variant · Cross-references for the variant

Тор

General inform

UniProtKB/Swiss-ProtFBN1_HUMAN (P35555)Gene symbol(s)Official: FBN1
Synonym(s): FBNChromosomal location15q21.1Protein nameFibrillin-1Length of the protein2871

Тор

Information on th	le variant
FTId	VAR_002278
Amino acid position of the variant	129
Residue change	From Cysteine (C) to Tyrosine (Y), C129Y, p.Cys129Tyr
Physico- chemical property	Change from medium size and polar (C) to large size and aromatic (Y)
BLOSUM score	-2
Status	Disease
Disease	Marfan syndrome (MFS) Defects in FBN1 are a cause of Marfan syndrome (MFS) [MIM:154700]. MFS is an autosomal dominant disorder that affects the skeletal, ocular, and cardiovascular systems. A wid abnormalities occurs with MFS, including scoliosis, chest wall deformity, tall stature, abnormal joint mobility. Ectopia lentis occurs in up to about 80% of MFS patients and is almost cause of premature death in MFS patients is progressive dilation of the aortic root and ascending aorta, causing aortic incompetence and dissection. Note=The majority of the more currently known are point mutations, the rest are frameshifts and splice site mutations. Marfan syndrome has been suggested in at least 2 historical figures, Abraham Lincoln and F
Comment	Severe neonatal

Disclaimer: Variants classification is intended for research purposes only, not for clinical and diagnostic use. The label disease variant is assigned according to literature reports on probable disease on theoretical reasons. Therefore this label must not be considered as a definitive proof for the pathogenic role of a variant.

×	38]"Fifteen novel FBN1 mutations causing Marfan syndrome det heteroduplex analysis of genomic amplicons "
	Nijbroek G., Sood S., McIntosh I., Francomano C.A., Bull E., I
	<u>L., Ramirez F., Pyeritz R.E., Dietz H.C.</u>
[4	Am. J. Hum. Genet. 57:8-21(1995) [PubMed: 7611299] [Abstro
	Cited for VADTANITS MES TVD-129. PHE-166. CVS-746. ADG
[4	ARG-1013; LYS-1073; SER-1382 AND ARG-1928.
[4	
	Cited for: VARIANTS MFS THR-705; TYR-711; GLY-1055 AND TYR-1153.
[43]	"A novel de novo mutation in exon 14 of the fibrillin-1 gene associated with delayed secretion of fibrillin in a patient with a mild Marfan phenotype." Booms P., Withers A.P., Boxer M., Kaufmann U.C., Hagemeier C., Vetter U., Robinson P.N. Hum. Genet. 100:195-200(1997) [PubMed: 9254848] [Abstract] <u>Cited for</u> : VARIANT MFS TYR-587.
[44]	"The pathogenicity of the Pro1148Ala substitution in the FBN1 gene: causing or predisposing to Marfan syndrome and aortic aneurysm, or clinically innocent?" Schrijver I., Liu W., Francke U. Hum. Genet. 99:607-611(1997) [PubMed: 9150726] [Abstract] <u>Cited for</u> : VARIANT ALA-1148.
[45]	"Mutation screening of all 65 exons of the fibrillin-1 gene in 60 patients with Marfan syndrome: report of 12 novel mutations." Hayward C., Porteous M.E.M., Brock D.J.H. Hum. Mutat. 10:280-289(1997) [PubMed: 9338581] [Abstract] <u>Cited for</u> : VARIANTS MFS ARG-111; CYS-545; CYS-627; GLY-750; ARG-1074; HIS-1170; TRP-1171; LYS-1173; TYR-1404; GLY-1610; LYS-1893; TRP-2099; TYR-2111; ARG-2258; TRP-2282 AND ARG-2489.
[46]	"P1148A in fibrillin-1 is not a mutation leading to Shprintzen-Goldberg syndrome." Watanabe Y., Yano S., Koga Y., Yukizane S., Nishiyori A., Yoshino M., Kato H. Hum. Mutat. 10:326-327(1997) [PubMed: 9338588] [Abstract] <u>Cited for</u> : VARIANT ALA-1148.
[47]	"P1148A in fibrillin-1 is not a mutation anymore." Wang M., Mathews K.R., Imaizumi K., Beiraghi S., Blumberg B., Scheuner M., Graham J.M. Jr., Godfrey M. Nat. Genet. 15:12-12(1997) [PubMed: 8988160] [Abstract] <u>Cited for</u> : VARIANT ALA-1148.
[48]	"Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome." Montgomery R.A., Geraghty M.T., Bull E., Gelb B.D., Johnson M., McIntosh I., Francomano C.A., Dietz H.C. Am. J. Hum. Genet. 63:1703-1711(1998) [PubMed: 9837823] [Abstract] <u>Cited for</u> : VARIANT MFS ARG-1265.
[49]	"Correlation of a recurrent FBN1 mutation (R122C) with an atypical familial Marfan syndrome phenotype." Black C., Withers A.P., Gray J.R., Bridges A.B., Craig A., Baty D.U., Boxer M. Hum Mutat Suppl. 1:S198-S200(1998) [PubMed: 9452085] [Abstract]

Results Customize

- > Show only reviewed (7) 🚖 (UniProtKB/Swiss-Prot) or unreviewed (3) 🚖 (UniProtKB/TrEMBL) entries
- > Quote terms: "marfan syndrome"
- > Restrict term "syndrome" to keyword (2)

Accession	[≑] Entry name	Status	Protein names □ ···>□	[≑] Gene names	[≑] Organism
P35555	FBN1_HUMAN	*	Fibrillin-1	FBN1 FBN	Homo sapiens (Human)
P36897	TGFR1_HUMAN	*	TGF-beta receptor type-1	TGFBR1 ALK5 SKR4	Homo sapiens (Human)
P37173	TGFR2_HUMAN	*	TGF-beta receptor type-2	TGFBR2	Homo sapiens (Human)
P35556	FBN2_HUMAN	*	Fibrillin-2	FBN2	Homo sapiens (Human)
P08123	CO1A2_HUMAN	*	Collagen alpha-2(I) chain	COL1A2	Homo sapiens (Human)
P35520	CBS_HUMAN	*	Cystathionine beta-synthase	CBS	Homo sapiens (Human)
Q75N90	FBN3_HUMAN	*	Fibrillin-3	FBN3 KIAA1776	Homo sapiens (Human)
Q75N89	Q75N89_HUMAN	*	Fibrillin 1	FBN1	Homo sapiens (Human)
Q9NP01	Q9NP01_HUMAN	*	Fibrillin 15		Homo sapiens (Human)
Q75N88	Q75N88_HUMAN	*	Fibrillin 1	FBN1	Homo sapiens (Human)

© 2002–2011 UniProt Consortium | License & Disclaimer | Contact

	merred nom sequence of structural similarity. obtree. Drif ooc
Cellular component	microfibril Traceable author statement. Source: BHF-UCL
Molecular function	calcium ion binding Inferred from electronic annotation. Source: InterPro
	extracellular matrix structural constituent Traceable author statement. Source: ProtInc

Complete GO annotation...

Alternative products

This entry describes 2 isoforms produced by alternative splicing. [Align] [Select]

Isoform 1 (identifier: P35556-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

Isoform 2 (identifier: P35556-2)

The sequence of this isoform differs from the canonical sequence as follows: 113-145: Missing. 1491-1506: DIDECSFQNICVFGTC → GGSPGFQLIFKLDQPQ 1507-2912: Missing.

Sequence annotation (Features)

	Feature key	Position(s)	Length	Description	Graphical view					
Molecule processing										
	Signal peptide	1 – 28	28	(Potential)						
	Chain	29 – 2912	2884	Fibrillin-2						
Regions										
	Domain	111 – 142	32	EGF-like 1	+					
	Domain	145 – 176	32	EGF-like 2	+					
	Domain	176 – 208	33	EGF-like 3	+					
	Domain	214 – 266	53	TB 1						
	Domain	276 – 317	42	EGF-like 4; calcium-binding						

-										
🗲 🔿 💭 ht	tp://www. uniprot.o	rg /uniref/?query=F	BN1 🔎 🗕 🗟 🖒	×	FBN1 in UniRef 🛛 🗙					* 7
x 🔶 🗌			🔍 - Search) 🏄 🛛	ᠫ Pavia 13°C 📑 🕒	Yeu 🕹	🕼 Rispond	i 🖪 🛟 🖂 -		(
UniProt → UniF	₹ef								Downloads ·	Contact · Documentation/H
Search	Blast	Align	Retrieve	П						
Search in		Query		、	Jeque	ence	CIUS	rers	UNIKET	
Sequence Cluster	rs (UniRef)	FBN1								
14 results for FBN1 i	n UniRef sorted by so	core descending ⊠								
Browse by taxon	omy 式 Map to UniP	ProtKB or UniParc								Downlo
Ų₽.										Page 1
Results Custom	nize									

> Show only clusters with an identity of 50%, 90%, 100%

> Restrict term "fbn1" to cluster name (1)

> Repeat search in UniProtKB (60)

 UniRef cluster name 	Status	UniRef cluster name	Size	UniRef cluster member(s)		Length	Identity
UniRef50_P35556	*	Cluster: Fibrillin-2	203	P35556 UP100017C2F73 UP10002264C52 UP100005A2410 F7HHZ8 UP10001D3647C F7BMQ7 G1PBK9 UP10001D57536 +193	Homo sapiens (Human) ? Bos taurus (Bovine) Canis familiaris (Dog) (Canis lupus familiaris) Callithrix jacchus (White-tufted-ear marmoset) Equus caballus (Horse) Myotis lucifugus (Little brown bat) Oryctolagus cuniculus (Rabbit) Mus musculus (Mouse) +23	2,912	50
UniRef90_P35555	*	Cluster: Fibrillin-1	38	P35555 Q75N89 Q75N88 UP100020AC550 F1MZC8 F7CKI7 A2AQ53 F7GUT7 UP10001D37633 +28	Homo sapiens (Human) ? Bos taurus (Bovine) Equus caballus (Horse) Mus musculus (Mouse) Callithrix jacchus (White-tufted-ear marmoset) Rattus norvegicus (Rat) Macaca mulatta (Rhesus macaque) Sus scrofa (Pig) +4	2,871	90
UniRef100_Q99L19	*	Cluster: Fbn1 protein (Fragment)	2	Q99L19 Q7TMG6	Mus musculus (Mouse)	272	100
UniRef90_Q59HB9	*	Cluster: Fibrillin 1 variant (Fragment)	14	Q59HB9 O88840 Q91WZ4 Q63956 Q3TRZ5 Q3TNW1 Q60784 F1PIA3 F7DVX9 +4	Homo sapiens (Human) Mus musculus (Mouse) Mus sp. Canis familiaris (Dog) (Canis lupus familiaris) Callithrix jacchus (White-tufted-ear marmoset) Gallus gallus (Chicken)	830	90
UniRef50_A8WM46		Cluster: CBR-EBN-1 protein	6	A8WM46 A2G8J0 G0PN10	Caenorhabditis briggsae Trichomonas vaginalis Caenordabditis branneri (Nematode worm)	3 928	5(
 😂 📥 🔳 👋 🚺	05 Prim	ary Database 🔋 🎼 05 Primary Datal	oase	a Microsoft PowerPoin	😝 FBN1 in UniRef - Win II	💽 > ا	- 🔁 ())

The UniProt Consortium. 2010. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Research.Vol. 38:D142-D148