Sequence comparison

theory

A sequence by itself does not provide any information

information can be retrieved by

- Sequence analysis
- Similarity searching by means of comparison between sequences

4 GOALS FOR SIMILARITY SEARCHING

- 1. Localization of a new sequence through the similarity with a previously localized sequence.
- 2. <u>Hypothesis on function</u> of a new sequence, if it is identical or similar to a known sequence
- 3. <u>Classification</u> of a protein in a specific family

- 4. Assessment of evolutionary relations between sequences
 - · Identification of conserved sequences

sequences where any change in a specific position (amino acid or DNA) does not change the molecule chemico-physical traits

You can always evaluate similarity of sequences but sometimes you cannot establish the mechanisms which caused similarity.

Biological similarity may occur for

- ·Random events
- ·Convergent adaptation
- ·Homology

Example: wings of birds and bats are not homologous since are derived from independent evolutionary steps

Sequence comparison

similarity

#

homology

Apart from the causes

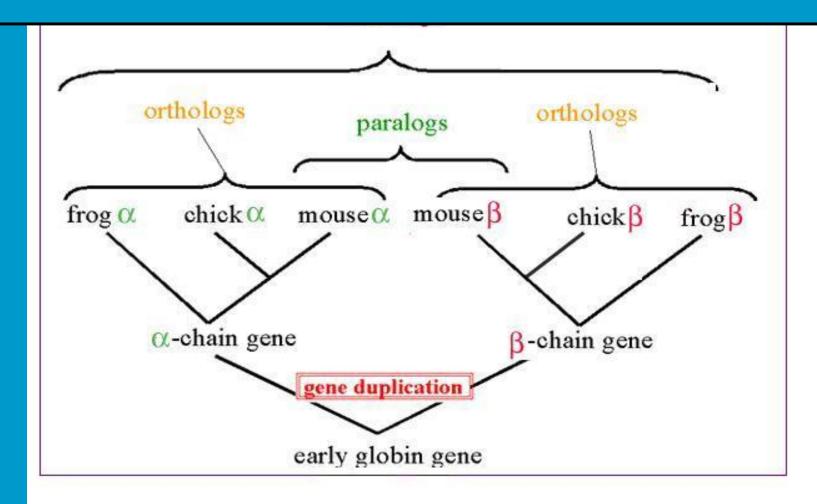
Common ancestor

similarity (homology

Through the sequence comparison you can explore the relations between sequences

- Similarity is a quantitative value
 - · concerns identity between sequences
- Homology is a qualitative trait
 - refers to an evolutionary relation between sequences

Some words... concerning relation between sequences


Similar: sequences which are characterized by an identity level

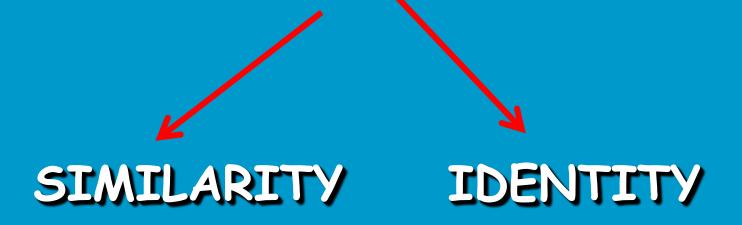
<u>Homologous</u>: sequences which derive from the same evolutionary pathway

Hortologous: homologous sequences which derive from a common ancestor but evolved independently. Function is or is not maintained.

<u>Paralogous</u>: homologous sequences which evolved through gene duplication in the same species

Homologous sequences

Homologous sequences. Orthologs and Paralogs are two types of homologous sequences. Orthology describes genes in different species that derive from a common ancestor. Orthologous genes may or may not have the same function. Paralogy describes homologous genes within a single species that diverged by gene duplication.


A high similarity likely indicates homology but

homology only sometimes corresponds
to high similarity

Homology, Similarity, and Identity

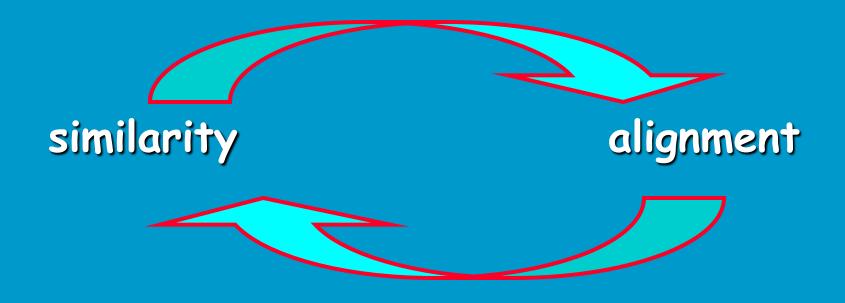
- Identity is a measure made on an alignment
 - Sequence A can be "32 % identical to" Sequence B
- Similarity is a measure of how close are
 - Two sequences
 - Two amino acids (isoleucine and leucine)
- Homology is a property that exists or does not exist
 - Sequence A <u>IS</u> or <u>IS</u> <u>NOT</u> homologous to Sequence B
 - Sequence A cannot be "40% homologous to" B Homology is established on the basis of measured similarity or identity

ALIGNMENT BETWEEN SEQUENCES

SIMILARITY SEARCHING IS BASED ON ALIGNMENT BETWEEN SEQUENCES.

- Sequence identity
 - Percent of matches (nucleotides, amino acids)

- Sequence similarity
 - measure of how close are two sequences


to evaluate identity or similarity between sequences comparison can be perfoprmed

- Between two sequences (pairwise alignment)
 - · With a subject sequence
 - In public database

- Between more sequences (multiple alignment)
 - Multiple comparison
 - In public database

Pairwise comparison between

two sequences

- 1 definition of similarity criteria
- 2 sequence alignment
- 3- similarity evaluation

Alignment of the two strings of characters.

All the possible alignments are tested

1- alignment of the string of characters All the possible alignments are tested

For example: Align sequence 2 on sequence 1

Query sequence — AAKQW

Sequence 1

Subject sequence — AAKKQW

Sequence 2

AAKKQW

AAKQW

6 characters

5 caharacters

We tested 10(5+5) possible alignments and compared 30(6x5) characters

1- Line up the sequences against each other

AAKKQW AAKQW AAKKQW AAKQW

AAKKQW AAKQW

AAKKQW AAKQW

AAKKQW AAKQW

AAKKQW AAKQW

AAKKQW AAKQW

AAKKQW AAKQW

AAKKQW AAKQW

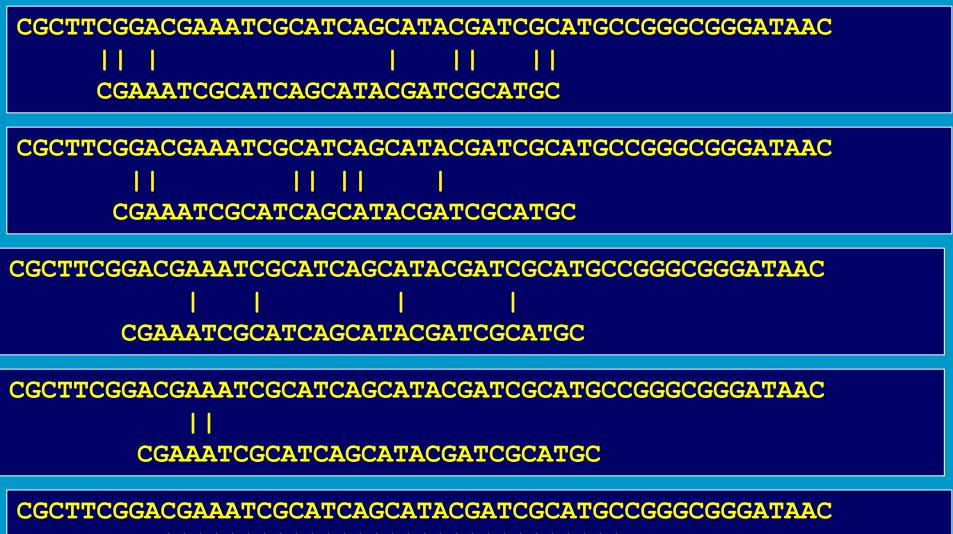
AAKKQW AAKQW

- 1- alignment of the two strings of characters. All the possible alignments are tested
 - · without gaps

2- evaluation of similarity by the sum of the characters which align perfectly.

2- score all the possible alignments through the sum of the characters which align perfectly (matches).

AAKKQW AAKQW	0	AAKKQW AAKQW	3
AAKKQW AAKQW	0	AAKKQW AAKQW	1
AAKKQW AAKQW	0	AAKKQW AAKQW	0
AAKKQW AAKQW	0	AAKKQW AAKQW	0
AAKQW/ AAKQW/	4	AAKKQW AAKQW	0


Simple pairwise alignment

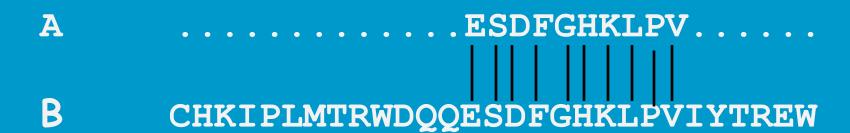
Two sequences are written one on the top of the other.

CGAAATCGCATCAGCATACGATCGCATGC

the query sequence is moved on the subject sequence.

CGCTTCGGACGAAATCGCATCAGCATACGATCGCATGCCGGGCGGG
CGCTTCGGACGAAATCGCATCAGCATACGATCGCATGCCGGGCGGG
CGCTTCGGACGAAATCGCATCAGCATACGATCGCATGCCGGGCGGG
CGCTTCGGACGAAATCGCATCAGCATACGATCGCATGCCGGGCGGG
CGCTTCGGACGAAATCGCATCAGCATACGATCGCATGCCGGGCGGG

The highest score corresponds to the best alignment


Global or local alignment?

Global	(fu	111-	lengt	h) ali	ignment	:			
LTGAR	DWE	EDI	PLW	I DWD'I	EQESDI	KTRA	FGT	NC	CHK
11	J		- 1	- 1		-11	-11	1	11
TGIP	LWI	DV	VDLE	DESDN	SCNTDE	IYTRE	WGTN	MZ	HK

TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHK

Sub-sequences

When a sequence A is identical to any portion of a sequence B, sequence A is said to be a sub-sequence of B.

GLOBAL OR LOCAL ALIGNMENT?

id.

local alignment:

TGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK
13

TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHK

Which is the best?

GLOBAL OR LOCAL ALIGNMENT?

- 1) Select the best alignment by a biological point of view
- 2) At computational level the best alignment measure should reflect the best biological alignment

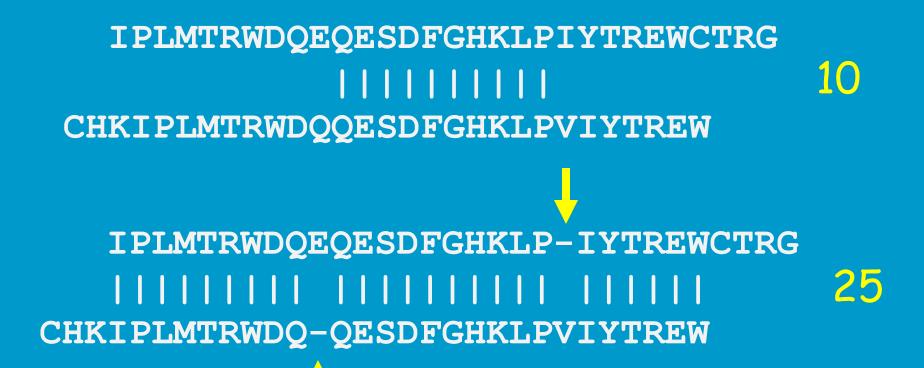
Local alignment often better reflect a common biological function

GLOBAL OR LOCAL ALIGNMENT?

- •In theory, global alignment evaluates similarity of the overall sequence. It is best for describing relations between sequences.
- •In practice, local alignment is of more general use.
 - •In proteins only parts are homologous (share conserved domains)

Gaps

Simple alignment often does not work



It can be necessary to include gaps (nucleotide insertion/deletion) and evaluate alignment with "gaps"

Gap

A SPACE INTRODUCED INTO AN ALIGNMENT TO COMPENSATE FOR INSERTIONS AND DELETIONS IN ONE SEQUENCE RELATIVE TO ANOTHER.

Similarity between two sequences with gaps Insertion and/or deletion (INDEL) of characters (gaps)

Simple alignment does not work between A and B

APLMTRWGHKLPV.....

A is identical to different parts of B

More than one block of gaps must be inserted

GAP PENALTY

Is based on two notions:

- Deletion or insertion (gap) is much less likely to occur than the most radical amino acid substitution. It should be heavily penalized.
- Once a deletion or insertion (gap) has occurred in a given position deletion or insertion of additional residues (gap extension) becomes much more likely.

GAP PENALTY

In the scoring of an alignment introduction of a gap and extension of the gap causes the deduction of a fixed amount (the gap score, \mathcal{G}).

$$G=a+bx$$
, $a>>b$

a is the gap opening penalty, b is the gap extension penalty, x is the extension of the gap after the opening.

The choice of gap costs is empirical, but it is customary to choose a high value for gap existence (10-15) and a low value for gap extension (1-2).

Similarity between two sequences with gaps

gap extension penalty $\frac{Score = 25 - 1 - (1 + (0.1*3))}{(es.: -0.1 for each ins/del following the first)}$

QUANTITATIVE EVALUATION

OF SIMILARITY (SCORE)

OF AN ALIGNMENT

Comprehensive alignment score

Must account for <u>the identity</u> of all the characters in both sequences <u>and the gap</u> <u>penalties</u>.

The procedure for the score evaluation should maximise the number of identical matches between sequences by inserting gaps

RAW SCORE

THE SCORE OF AN ALIGNMENT, S.,
IS CALCULATED AS THE SUM OF

- 1- SUBSTITUTION SCORES
- 2- GAP SCORES.